Add like
Add dislike
Add to saved papers

Evolutionary advantage of directional symmetry breaking in self-replicating polymers.

Due to the asymmetric nature of the nucleotides, the extant informational biomolecule, DNA, is constrained to replicate unidirectionally on a template. As a product of molecular evolution that sought to maximize replicative potential, DNA's unidirectional replication poses a mystery since symmetric bidirectional self-replicators obviously would replicate faster than unidirectional self-replicators and hence would have been evolutionarily more successful. Here we carefully examine the physico-chemical requirements for evolutionarily successful primordial self-replicators and theoretically show that at low monomer concentrations that possibly prevailed in the primordial oceans, asymmetric unidirectional self-replicators would have an evolutionary advantage over bidirectional self-replicators. The competing requirements of low and high kinetic barriers for formation and long lifetime of inter-strand bonds respectively are simultaneously satisfied through asymmetric kinetic influence of inter-strand bonds, resulting in evolutionarily successful unidirectional self-replicators. Within our model, circular strands, the configuration prefered by primitive life forms, have higher replicative potential compared to linear strands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app