JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Defective formyl peptide receptor 2/3 and annexin A1 expressions associated with M2a polarization of blood immune cells in patients with chronic obstructive pulmonary disease.

BACKGROUND: Controversy exists in previous studies on macrophage M1/M2 polarization in chronic obstructive pulmonary disease (COPD). We hypothesized that formyl peptide receptor (FPR), a marker of efferocytosis and mediator of M1/M2 polarization, may be involved in the development of COPD.

METHODS: We examined FPR 1/2/3 expressions of blood M1/M2a monocyte, neutrophil, natural killer (NK) cell, NK T cell, T helper (Th) cell, and T cytotoxic (Tc) cell by flowcytometry method in 40 patients with cigarette smoking-related COPD and 16 healthy non-smokers. Serum levels of five FPR ligands were measured by ELISA method.

RESULTS: The COPD patients had lower M2a percentage and higher percentages of NK, NK T, Th, and Tc cells than the healthy non-smokers. FPR2 expressions on Th/Tc cells, FPR3 expressions of M1, M2a, NK, NK T, Th, and Tc cells, and serum annexin A1 (an endogenous FPR2 ligand) levels were all decreased in the COPD patients as compared with that in the healthy non-smokers. FPR1 expression on neutrophil was increased in the COPD patient with a high MMRC dyspnea scale, while FPR2 expression on neutrophil and annexin A1 were both decreased in the COPD patients with a history of frequent moderate exacerbation (≥ 2 events in the past 1 year). In 10 COPD patients whose blood samples were collected again after 1-year treatment, M2a percentage, FPR3 expressions of M1/NK/Th cells, FPR2 expression on Th cell, and FPR1 expression on neutrophil were all reversed to normal, in parallel with partial improvement in small airway dysfunction.

CONCLUSIONS: Our findings provide evidence for defective FPR2/3 and annexin A1 expressions that, associated with decreased M2a polarization, might be involved in the development of cigarette smoking induced persistent airflow limitation in COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app