JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Partitioning ground reaction forces for multi-segment foot joint kinetics.

BACKGROUND: Kinematic multi-segment foot models have been increasingly used to study foot function. The addition of kinetics to these models may enhance their utility; however, this been hindered by limitations in measuring ground reaction forces (GRFs) under individual foot segments.

PURPOSE: To determine the accuracy of partitioning segment GRFs from a single force platform on foot joint kinetics.

METHODS: Two potential partitioning methods were applied to a previously published three-segment kinetic foot model. The first method calculated joint kinetics only when the center of pressure crossed anterior to a joint (CPcross). The second method utilized a virtual pressure mat and a proportionality assumption to partition GRFs from the force platform (PRESS). Accuracy was assessed by comparing joint moments and powers obtained from each partitioning method to those obtained from a dual force plate approach that isolated forces under two segments at a time (2Plate). Thirteen healthy pediatric subjects walked in a controlled manner so as to isolate the kinetics acting at the metatarsophalangeal (MTP) joint and, subsequently, the midtarsal joint.

RESULTS: The PRESS method was generally more accurate than the CPcross method, and both methods were more accurate at the midtarsal joint than at the MTP joint. At the MTP joint, sagittal plane moment peaks, power peaks, and work done were slightly overestimated, more so by CPcross than PRESS. At the midtarsal joint, sagittal plane moments were captured well by PRESS, while CPcross missed the early portion of the moment, but both methods captured power profiles fairly accurately.

SIGNIFICANCE: Analysis of kinetics in multi-segment foot models may provide insight into foot function, pathologies, and interventions. Partitioning accuracy and generalizability is promising for analysis of the midtarsal joints but has limitations at the MTP joint.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app