Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

N-3 polyunsaturated fatty acids restore Th17 and Treg balance in collagen antibody-induced arthritis.

N-3 polyunsaturated fatty acids (PUFA) have anti-inflammatory effects and were considered useful for the treatment of rheumatoid arthritis (RA). Recently, several studies suggested that n-3 PUFAs attenuated arthritis in animal model and human, however the mechanism is still unclear. Interleukin 17 (IL-17) is a pro-inflammatory cytokine mainly produced by T helper 17 (Th17) cells which cause tissue inflammation and bone erosion leading to joint destruction. In contrast, regulatory T (Treg) cells down-regulate various immune responses by suppression of naïve T cells. The imbalance between Th17 cells and Tregs cell is important for the pathogenesis of RA. Here, we investigated whether n-3 PUFAs attenuate arthritis in collagen antibody-induced arthritis (CAIA) model. We used fat-1 transgenic mice expressing the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase that converts n-6 to n-3 fatty acids, leading to abundant n-3 fatty acids without the need of a dietary n-3 supply. Clinical arthritis score was significantly attenuated in fat-1 mice compared to wild type (WT) mice on day 7 (1.6±1.8, p = 0.012) and day 9 (1.5±1.6, p = 0.003). Ankle thickness also decreased significantly in fat-1 mice compared to WT mice (1.82±0.11, p = 0.008). The pathologic finding showed that inflammatory cell infiltration and bone destruction were reduced in fat-1 mice compared to WT. The expression levels of IL-17 and related cytokines including IL-6 and IL-23 decreased in the spleen and ankle joint tissue of fat-1 mice compared to WT mice. Furthermore, Treg cells were expanded in the spleen of fat-1 mice and Treg cell differentiation was significantly higher in fat-1 mice than in wild type (p = 0.038). These data suggest that n-3 PUFAs could attenuate arthritis through increasing the expression of FoxP3 and the differentiation of Treg, while reducing IL-17 production. Therefore, dietary supplementation of n-3 PUFAs could have a therapeutic potential for the treatment of RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app