Add like
Add dislike
Add to saved papers

Multiplicity-Adjusted Confidence Limits in Risk Assessment with Quantal Response Data.

In risk assessment, it is often desired to make inferences on the risk at certain low doses or on the dose(s) at which a specific benchmark risk (BMR) is attained. At times, [Formula: see text] dose levels or BMRs are of interest, and some form of multiplicity adjustment is necessary to ensure a valid [Formula: see text] simultaneous inference. Bonferroni correction is often employed in practice for such purposes. Though relative simple to implement, the Bonferroni strategy can suffer from extreme conservatism (Nitcheva et al., 2005; Al-Saidy et al., 2003). Recently, Kerns (2017) proposed the use of simultaneous hyperbolic and three-segment bands to perform multiple inferences in risk assessment under Abbott-adjusted log-logistic model with the dose level constrained to a given interval. In this paper, we present and compare methods for deriving multiplicity-adjusted upper limits on extra risk and lower bounds on the benchmark dose under Abbott-adjusted log-logistic model. Monte Carlo simulations evaluate the characteristics of the simultaneous limits. An example is given to illustrate the use of the methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app