Add like
Add dislike
Add to saved papers

Syn vs Anti Carboxylic Acids in Hybrid Peptides: Experimental and Theoretical Charge Density and Chemical Bonding Analysis.

A comparative study of syn vs anti carboxylic acids in hybrid peptides based on experimental electron density studies and theoretical calculations shows that, in the anti form, all three bond angles surrounding Ccarboxyl of the -COOH group are close to ∼120°, as expected for a C-sp2 atom, whereas in the syn form, the ∠Cα -C(O)-Ohydroxyl angle is significantly smaller by 5-10°. The oxygen atom in the carboxyl group is more electronegative in the anti form, so the polarity of the acidic O-H bond is higher in the anti form compared to the syn form, as observed within the limitations of H atom treatment in X-ray diffraction. Consequently, the investigated anti carboxylic acid forms the strongest O-H···O hydrogen bond among all model compounds. Furthermore, according to natural bond orbital analysis, the oxygen lone pairs are clearly nonequivalent, as opposed to the general notion of hybridization of equivalent sp2 and sp3 lone pairs on carbonyl or hydroxyl oxygen atoms. The hybridization of the lone pairs is directly related to the directionality and strength of hydrogen bonds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app