Add like
Add dislike
Add to saved papers

Molecular and Physiological Characterization of a Receptor for d-Amino Acid-Containing Neuropeptides.

Neuropeptides in several animals undergo an unusual post-translational modification, the isomerization of an amino acid residue from the l-stereoisomer to the d-stereoisomer. The resulting d-amino acid-containing peptide (DAACP) often displays biological activity higher than that of its all-l-residue analogue, with the d-residue being critical for function in many cases. However, little is known about the full physiological roles played by DAACPs, and few studies have examined the interaction of DAACPs with their cognate receptors. Here, we characterized the signaling of several DAACPs derived from a single neuropeptide prohormone, the Aplysia californica achatin-like neuropeptide precursor (apALNP), at their putative receptor, the achatin-like neuropeptide receptor (apALNR). We first used quantitative polymerase chain reaction and in situ hybridization experiments to demonstrate receptor ( apALNR) expression throughout the central nervous system; on the basis of the expression pattern, we identified novel physiological functions that may be mediated by apALNR. To gain insight into ligand signaling through apALNR, we created a library of native and non-native neuropeptide analogues derived from apALNP (the neuropeptide prohormone) and evaluated them for activity in cells co-transfected with apALNR and the promiscuous Gα subunit Gα-16. Several of these neuropeptide analogues were also evaluated for their ability to induce circuit activity in a well-defined neural network associated with feeding behavior in intact ganglia from Aplysia. Our results reveal the specificity of apALNR and provide strong evidence that this receptor mediates diverse physiological functions throughout the central nervous system. Finally, we show that some native apALNP-derived DAACPs exhibit enhanced stability toward endogenous proteases, suggesting that the d-residues in these DAACPs may increase the peptide lifetime, in addition to influencing receptor specificity, in the nervous system. Ultimately, these studies provide insight into signaling at one of the few known DAACP-specific receptors and advance our understanding of the roles that l- to d-residue isomerization play in neuropeptide signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app