Add like
Add dislike
Add to saved papers

Three-dimensional dynamic measurement of irregular stringy objects via digital holography.

Optics Letters 2018 March 16
Dynamic stringy objects such as liquid rims and ligaments are frequently observed in important applications such as the multiphase breakup of fuel droplets. We develop a new method based on digital in-line holography to automatically measure complicated stringy objects. A static spring mounted on a rotator is measured to validate the effectiveness and accuracy of the method. The sections are extracted along the skeleton of the spring in a depth-of-field extended image and then sized and located as individual particles using a hybrid method. The surface points of sections are stitched together to visualize the entire spring. Local thickness errors smaller than 5.3%, and z errors smaller than 230 μm are achieved. This method is applied to characterize the spatial-temporal features of the liquid rim formed in the bag-type regime of the aerodynamic breakup of a falling drop. The evolution of the rim/ligament structures is continuously captured in seven frames, lasting in 1.58 ms. This Letter extends the application of digital holography as an effective 3D diagnostic tool.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app