Add like
Add dislike
Add to saved papers

Spatially resolved standoff trace chemical sensing using backwards transient absorption spectroscopy.

Optics Letters 2018 March 16
A technique for the spatially resolved and molecule-specific detection of chemical vapors is presented. The chemical specificity arises from a transient absorption spectrum where an ultraviolet (UV) pulse excites the molecule to a Rydberg state, and a near-infrared (NIR) or visible probe pulse records a transient absorption spectrum. By recording the NIR pulse reflected off a random, distant object and measuring the elapsed time between the emission of the UV pulse and the absorption of a counter-propagating NIR pulse, the distance to the absorber is obtained. The feasibility of the approach is demonstrated by detecting acetone plumes with millimeter scale spatial resolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app