Add like
Add dislike
Add to saved papers

Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor.

Optics Letters 2018 March 16
Using a nondegenerate four-wave mixing (FWM) process based on a double-Λ scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app