Add like
Add dislike
Add to saved papers

Localizing Conformational Hinges by NMR: Where Do Hepatitis B Virus Core Proteins Adapt for Capsid Assembly?

The hepatitis B virus (HBV) icosahedral nucleocapsid is assembled from 240 chemically identical core protein molecules and, structurally, comprises four groups of symmetrically nonequivalent subunits. We show here that this asymmetry is reflected in solid-state NMR spectra of the capsids, in which peak splitting is observed for a subset of residues. We compare this information to dihedral angle variations from available 3D structures and also to computational predictions of "dynamic" domains and molecular hinges. We find that although, at the given resolution, dihedral angles variations directly obtained from the X-ray structures are not precise enough to be interpreted, the chemical-shift information from NMR correlates, and interestingly goes beyond, information from bioinformatics approaches. Our study reveals the high sensitivity with which NMR can detect the residues allowing the subtle conformational adaptations needed in lattice formation. Our findings are important for understanding the formation and modulation of protein assemblies in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app