Add like
Add dislike
Add to saved papers

Toward the oxidative deconstruction of lignin: oxidation of β-1 and β-5 linkages.

There have been numerous reports on methods for the oxidative cleavage of β-O-4 linkages in lignin model compounds, but relatively few reports of how those methods affect other linkages that are present in lignin. We have investigated the effect of several of these oxidation methods on the β-1 and the β-5 lignin linkages, using four β-1 and β-5 model compounds. We observed that direct oxidative cleavage of C-C bonds occurs in metal-catalyzed TEMPO oxidation systems and with iron porphyrin oxidations, neither of which had we observed in similar oxidations on β-O-4 models. The β-5 linkage proved to be largely resistant to all of these oxidative systems, but the dihydrofuran ring in the β-5 model 3 was opened when treated with KMnO4 at elevated temperature. Most promising was the oxidation of 2 with DDQ, which produced the benzylic ketone in high yield (84%), as it does in reactions with β-O-4 models. This reaction exhibits selectivity for the benzylic position as well as compatibility with phenols, characteristics that are highly desirable for a two-step, benzylic oxidation/Baeyer-Villiger route for cleavage of lignin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app