Add like
Add dislike
Add to saved papers

Engineered red blood cells for capturing circulating tumor cells with high performance.

Nanoscale 2018 March 30
Filtration of circulating tumor cells (CTCs) in peripheral blood is of proven importance for early cancer diagnosis, treatment monitoring, metastasis diagnosis, and prognostic evaluation. However, currently available strategies for enriching CTCs, such as magnetic activated cell sorting (MACS), face serious problems with purity due to nonspecific interactions between beads and leukocytes in the process of capturing. In the present study, the tumor-targeting molecule folic acid (FA) and magnetic nanoparticles (MNPs) were coated on the surface of red blood cells (RBCs) by hydrophobic interaction and chemical conjugation, respectively. The resulting engineered RBCs rapidly adhered to CTCs and the obtained CTC-RBC conjugates were isolated in a magnetic field. After treatment with RBC lysis buffer and centrifugation, CTCs were released and captured. The duration of the entire process was less than three hours. Cell counting showed that the capture efficiency was above 90% and the purity of the obtained CTCs was higher than 75%. The performance of the proposed method exceeded that of MACS® beads (80% for capture efficiency and 20% for purity) under the same conditions. The obtained CTCs could be successfully re-cultured and proliferated in vitro. Our engineered RBCs have provided a novel method for enriching rare cells in the physiological environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app