Add like
Add dislike
Add to saved papers

A novel reporter for real-time, quantitative imaging of AKT-directed K63-poly-ubiquitination in living cells.

Oncotarget 2018 Februrary 17
Post-translational K63-linked poly-ubiquitination of AKT is required for its membrane recruitment and phosphorylation dependent activation in response to growth-factor stimulation. Current assays for target specific poly-ubiquitination involve cumbersome enzymatic preparations and semi-quantitative readouts. We have engineered a reporter that can quantitatively and in a target specific manner report on AKT-directed K63-polyubiquitination (K63UbR) in live cells. The reporter constitutes the AKT-derived poly-ubiquitination substrate peptide, a K63 poly-ubiquitin binding domain (UBD) as well as the split luciferase protein complementation domains. In cells, wherein signaling events upstream of AKT are activated (e.g. either EGFR or IGFR), poly-ubiquitination of the reporter leads to a stearic constraint that prevents luciferase complementation. However, upon inhibition of growth factor receptor signaling, loss of AKT poly-ubiquitination results in a decrease in interaction between the target peptide and the UBD, allowing for reconstitution of the split luciferase domains and therefore increased bioluminescence in a quantitative and dynamic manner. The K63UbR was confirmed to be suitable for high throughput screen (HTS), thus providing an excellent tool for small molecule or siRNA based HTS to discover new inhibitors or identify novel regulators of this key signaling node. Furthermore, the K63UbR platform could be adapted for non-invasive monitoring of additional target specific K63-polyubiquitination events in live cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app