Add like
Add dislike
Add to saved papers

Long non-coding RNA HNF1A-AS1 promotes cell viability and migration in human bladder cancer.

Oncology Letters 2018 April
Bladder cancer is among the most frequent types of genitourinary malignancies and results in high morbidity and mortality. Despite considerable progress in methods of bladder cancer diagnosis and treatment, the detailed underlying molecular mechanisms of bladder cancer remain unclear, and the prognosis of patients remains poor. In the present study, the role of long non-coding (lnc)RNA hepatocyte nuclear factor 1A (HNF1A)-antisense RNA (AS)1 in bladder cancer progression was examined in vitro . HNF1A-AS1 was overexpressed in clinical bladder cancer tissues and cultured bladder cancer cells. Specific short hairpin RNAs against HNF1A-AS1 knocked down the expression of HNF1A-AS1, and thus suppressed the viability and migration/invasion abilities of the cells. Additionally, the depletion of HNF1A-AS1 in bladder cancer T24 and 5637 cell lines also induced cell accumulation in G0 /G1 phase with the cell cycle analysis. Overall, these data suggest that lncRNA HNF1A-AS1 may be a potential regulator of bladder cancer tumorigenesis, and provide novel insight into the diagnosis and treatment of bladder cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app