Add like
Add dislike
Add to saved papers

Iridium and Ruthenium Complexes of N -Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal.

Organometallics 2017 March 28
Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N -heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR )Cl]OTf complexes where R = t Bu ( 1 ), H ( 2 ), or Me ( 3 ). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ir ) or methoxy ( 5 Ir ); 4 Ir was reported previously, but 5 Ir is new. The analogous ruthenium complexes were also tested using [(η6 -cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ru ) or methoxy ( 5 Ru ); 4 Ru and 5 Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1 , 2 , 3 , 5 Ir , and for two [Ag(NHC-pyOR )2 ]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1 - 5 . In general, NHC-pyOR complexes 1 - 3 were modest precatalysts for both reactions. NHC complexes 1 - 3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3 , we trapped a product of its transformation, 3 SP , which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy ( 4 Ir ) is 5-8 times more active than x = methoxy ( 5 Ir ). Notably, ruthenium complex 4 Ru showed 95% of the activity of 4 Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4 Ir ≫ 4 Ru and 4 Ir ≈ 5 Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO2 . Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app