Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone.

Nature Communications 2018 March 15
Recent studies of slow earthquakes along plate boundaries have shown that tectonic tremor, low-frequency earthquakes, very-low-frequency events (VLFEs), and slow-slip events (SSEs) often accompany each other and appear to share common source faults. However, the source processes of slow events occurring in the shallow part of plate boundaries are not well known because seismic observations have been limited to land-based stations, which offer poor resolution beneath offshore plate boundaries. Here we use data obtained from seafloor observation networks in the Nankai trough, southwest of Japan, to investigate shallow VLFEs in detail. Coincident with the VLFE activity, signals indicative of shallow SSEs were detected by geodetic observations at seafloor borehole observatories in the same region. We find that the shallow VLFEs and SSEs share common source regions and almost identical time histories of moment release. We conclude that these slow events arise from the same fault slip and that VLFEs represent relatively high-frequency fluctuations of slip during SSEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app