Add like
Add dislike
Add to saved papers

Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry.

We report a method for comprehensive structural characterization of lipids in animal tissues using a combination of differential ion mobility spectrometry (DMS) with electron-impact excitation of ions from organics (EIEIO) mass spectrometry. Singly charged lipid ions in protonated or sodiated forms were dissociated by an electron beam having a kinetic energy of 10 eV in a branched radio-frequency ion trap. We established a comprehensive set of diagnostics to characterize the structures of glycerophospholipids, sphingolipids, and acylglycerols, including glycosylated, plasmalogen, and ester forms. This EIEIO mass spectrometer was combined with DMS as a separation tool to analyze complex lipid extracts. Deuterated quantitative standards, which were added during extraction, allowed for the quantitative analysis of the lipid molecular species in various lipid classes. We applied this technique to the total lipids extracted from porcine brain, and we structurally characterized over 300 lipids (with the exception of cis / trans double-bond isomerism in the acyl chains). The structural dataset of the lipidomes, whose regioisomers were distinguished, exhibit a uniquely defined distribution of acyl chains within each lipid class; that is, sn -1 and sn -2 in the cases of glycerophospholipids or sn -2 and ( sn -1, sn -3) in the cases of triacylglycerols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app