Add like
Add dislike
Add to saved papers

Exploiting and assessing multi-source data for supervised biomedical named entity recognition.

Bioinformatics 2018 July 16
Motivation: Recognition of biomedical entities from scientific text is a critical component of natural language processing and automated information extraction platforms. Modern named entity recognition approaches rely heavily on supervised machine learning techniques, which are critically dependent on annotated training corpora. These approaches have been shown to perform well when trained and tested on the same source. However, in such scenario, the performance and evaluation of these models may be optimistic, as such models may not necessarily generalize to independent corpora, resulting in potential non-optimal entity recognition for large-scale tagging of widely diverse articles in databases such as PubMed.

Results: Here we aggregated published corpora for the recognition of biomolecular entities (such as genes, RNA, proteins, variants, drugs and metabolites), identified entity class overlap and performed leave-corpus-out cross validation strategy to test the efficiency of existing models. We demonstrate that accuracies of models trained on individual corpora decrease substantially for recognition of the same biomolecular entity classes in independent corpora. This behavior is possibly due to limited generalizability of entity-class-related features captured by individual corpora (model 'overtraining') which we investigated further at the orthographic level, as well as potential annotation standard differences. We show that the combined use of multi-source training corpora results in overall more generalizable models for named entity recognition, while achieving comparable individual performance. By performing learning-curve-based power analysis we further identified that performance is often not limited by the quantity of the annotated data.

Availability and implementation: Compiled primary and secondary sources of the aggregated corpora are available on: https://github.com/dterg/biomedical_corpora/wiki and https://bitbucket.org/iAnalytica/bioner.

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app