Add like
Add dislike
Add to saved papers

Left ventricular pumping during the transition-adaptation sequence in preterm infants: impact of the patent ductus arteriosus.

BackgroundPostnatally, the immature left ventricle (LV) is subjected to high systemic afterload. Hypothesizing that LV pumping would change during transition-adaptation, we analyzed the LV in preterm infants (GA≤32+6), clinically stable or with a hemodynamically significant patent ductus arteriosus (hPDA) by applying a pump model.MethodsPumping was characterized by EA (effective arterial elastance, reflecting afterload), EES (end-systolic LV elastance, reflecting contractility), EA /EES coupling ratios, descriptive EA :EES relations, and EA /EES graphs. Data calculated from echocardiography and blood pressure were analyzed by diagnosis (S group: clinically stable, no hPDA, n=122; hPDA group, n=53) and by periods (early transition: days of life 1-3; late transition: 4-7; and adaptation: 8-30).ResultsS group: LV pumping was characterized by an increased EA /EES coupling ratio of 0.65 secondary to low EES in early transition, a tandem rise of both EA and EES in late transition, and an EA /EES coupling ratio of 0.45 secondary to high EES in adaptation; hPDA group: time-trend analyses showed significantly lower EA (P<0.0001) and EES (P=0.006). Therefore, LV pumping was characterized by a lower EA /EES coupling ratio (P=0.088) throughout transition-adaptation.ConclusionsIn stable infants, facing high afterload, the immature LV, enhanced by the physiological PDA, increases its contractility. In hPDA, facing low afterload, the overloaded immature LV exhibits a consistently lower contractility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app