JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Recent Advances in Modified Cellulose for Tissue Culture Applications.

Tissue engineering is a rapidly advancing field in regenerative medicine, with much research directed towards the production of new biomaterial scaffolds with tailored properties to generate functional tissue for specific applications. Recently, principles of sustainability, eco-efficiency and green chemistry have begun to guide the development of a new generation of materials, such as cellulose, as an alternative to conventional polymers based on conversion of fossil carbon (e.g., oil) and finding technologies to reduce the use of animal and human derived biomolecules (e.g., foetal bovine serum). Much of this focus on cellulose is due to it possessing the necessary properties for tissue engineering scaffolds, including biocompatibility, and the relative ease with which its characteristics can be tuned through chemical modification to adjust mechanical properties and to introduce various surface modifications. In addition, the sustainability of producing and manufacturing materials from cellulose, as well as its modest cost, makes cellulose an economically viable feedstock. This review focusses specifically on the use of modified cellulose materials for tissue culturing applications. We will investigate recent techniques used to promote scaffold function through physical, biochemical and chemical scaffold modifications, and describe how these have been utilised to reduce reliance on the addition of matrix ligands such as foetal bovine serum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app