JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Tabletop Femtosecond M-edge X-ray Absorption Near-Edge Structure of FeTPPCl: Metalloporphyrin Photophysics from the Perspective of the Metal.

Iron porphyrins are the active sites of many natural and artificial catalysts, and their photoinduced dynamics have been described as either relaxation into a vibrationally hot ground state or as a cascade through metal-centered states. In this work, we directly probe the metal center of iron(III) tetraphenyl porphyrin chloride (FeTPPCl) using femtosecond M2,3 -edge X-ray absorption near-edge structure (XANES) spectroscopy. Photoexcitation at 400 nm produces a (π,π*) state that evolves in 70 fs to an iron(II) ligand-to-metal charge transfer (LMCT) state. The LMCT state relaxes to a vibrationally hot ground state in 1.13 ps, without involvement of (d,d) intermediates. The tabletop extreme-ultraviolet probe, combined with semiempirical ligand field multiplet calculations, clearly distinguishes between metal-centered and ligand-centered excited states and resolves competing accounts of Fe(III) porphyrin relaxation. This work introduces tabletop M-edge XANES as a valuable tool for measuring femtosecond dynamics of molecular transition metal complexes in the condensed phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app