Add like
Add dislike
Add to saved papers

High Interfacial Charge Storage Capability of Carbonaceous Cathodes for Mg Batteries.

ACS Nano 2018 March 28
A rechargeable Mg battery where the capacity mainly originates from reversible reactions occurring at the electrode/electrolyte interface efficiently avoids the challenge of sluggish Mg intercalation encountered in conventional Mg batteries. The interfacial reactions in a cell based on microwave-exfoliated graphite oxide (MEGO) as the cathode and all phenyl complex (APC) as electrolyte are identified by quantitative kinetics analysis as a combination of diffusion-controlled reactions involving ether solvents ( esols) and capacitive processes. During magnesiation, esols in APC electrolytes can significantly affect the electrochemical reactions and charge transfer resistances at the electrode/electrolyte interface and thus govern the charge storage properties of the MEGO cathode. In APC-tetrahydrofuran (THF) electrolyte, MEGO exhibits a reversible capacity of ∼220 mAh g-1 at 10 mA g-1 , while a reversible capacity of ∼750 mAh g-1 at 10 mA g-1 was obtained in APC-1,2-dimethoxyethane (DME) electrolyte. The high capacity improvement not only points to the important role of the esols in the APC electrolytes but also presents a Mg battery with high interfacial charge storage capability as a very promising and viable competitor to the conventional intercalation-based batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app