Add like
Add dislike
Add to saved papers

Surface-Anchored Metal-Organic Frameworks as Versatile Resists for Gas-Assisted E-Beam Lithography: Fabrication of Sub-10 Nanometer Structures.

ACS Nano 2018 April 25
We demonstrate that surface-anchored metal-organic frameworks (SURMOFs) are extraordinary well-suited as resists for high-resolution focused electron beam induced processing (FEBIP) techniques. The combination of such powerful lithographic protocols with the huge versatility of MOF materials are investigated in respect to their potential in nanostructures fabrication. The applied FEBIP methods rely on the local decomposition of Fe(CO)5 and Co(CO)3 NO as precursors, either by the direct impact of the focused electron beam (electron beam induced deposition, EBID) or through the interaction of the precursor molecules with preirradiated/activated SURMOF areas (electron beam induced surface activation, EBISA). We demonstrate the huge potential of the approach for two different types of MOFs (HKUST-1 and Zn-DPDCPP). Our "surface science" approach to FEBIP, yields well-defined deposits with each investigated precursor/SURMOF combination. Local Auger electron spectroscopy reveals clean iron deposits from Fe(CO)5 ; deposits from Co(CO)3 NO contain cobalt, nitrogen, and oxygen. EBISA experiments were successful with Fe(CO)5 . Remarkably EBISA with Co(CO)3 NO does not result in deposit formation on both resists, making the process chemically selective. Most importantly we demonstrate the fabrication of "nested-L" test structures with Fe(CO)5 on HKUST-1 with extremely narrow line widths of partially less than 8 nm, due to reduced electron proximity effects within the MOF-based resists. Considering that the actual diameter of the electron beam was larger than 6 nm, we see a huge potential for significant reduction of the structure sizes. In addition, the role and high potential of loading and transport of the precursor molecules within the porous SURMOF materials is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app