Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modelling Charge Transfer in Weak Chemical Bonds: Insights from the Chemistry of Helium.

We studied the nature of the interaction of the weakly bound Be-He adduct by means of an integrated theoretical approach based on high-level quantum chemical calculations for the characterization of the potential energy surfaces and charge displaced upon adduct formation, together with the development of a semi-empirical analytical formulation of the interaction potential. Our results show that Be is able to form a stable adduct with He when the Be(1 D) (1s2 2s2 →1s2 2s0 2p2 ) excited state is involved, with a binding energy of as much as 10.2 kcal/mol, an astonishingly large value for He in neutral systems. The analysis of the leading interaction components in the Be*-He adduct proves the relevance of the charge transfer to the overall stability, which contributes to decreasing the intermolecular distance, thus strengthening the induction-energy component.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app