JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

TiO 2 Nanostructures as Anode Materials for Li/Na-Ion Batteries.

Here we summarize some results on the use of TiO2 nanostructures as anode materials for more efficient Li-ion (LIBs) and Na-ion (NIBs) batteries. LIBs are the leader to power portable electronic devices, and represent in the short-term the most adequate technology to power electrical vehicles, while NIBs hold promise for large storage of energy generated from renewable sources. Specifically, TiO2 an abundant, low cost, chemically stable and environmentally safe oxide represents in LIBs an alternative to graphite for applications in which safety is mandatory. For NIBs, TiO2 anodes (or more precisely negative electrodes) work at low voltage, assuring acceptable energy density values. Finally, assembling different TiO2 polymorphs in the form of nanostructures decreases diffusion distances, increases the number of contacts and offering additional sites for Na+ storage, helping to improve power efficiency. More specifically, in this contribution we highlighted our work on TiO2 anatase mesocrystals of colloidal size. These sophisticate materials; showing excellent textural properties, have remarkable electrochemical performance as anodes for Li/Na-ion batteries, with conventional alkyl carbonates electrolytes and safe electrolytes based on ionic liquids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app