Add like
Add dislike
Add to saved papers

A detour strategy for colloidally stable block-copolymer grafted MAPbBr 3 quantum dots in water with long photoluminescence lifetime.

Nanoscale 2018 March 30
Perovskite quantum dots (PQDs) exhibit remarkable photoluminescence properties; however, their use in biological applications is hindered by their extreme sensitivity to water. We report a facile and general strategy for the preparation of aqueous colloidally stable polystyrene-b-poly(ethyl oxide) (PS-b-PEO) grafted MAPbBr3 QDs (MA = methylammonium): transferring the as-synthesized PQD@PS-b-PEO from toluene into water using precipitation in hexane as a critical intermediate step. When rehydrating the precipitate in water, the PQDs can be dispersed well individually or self-assembled into well-defined vesicular nanostructures with high photoluminescence quantum yields of up to 43%, high color purity (full width at half maximum down to 18 nm), and long average photoluminescence lifetimes up to 164 ns. The resulting PQD nanostructures in water also show excellent thermo- and photo-stability, low cytotoxicity, and bright potential for cell imaging. This work highlights the future prospects of using polymer-modified PQDs with desired physicochemical properties for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app