Add like
Add dislike
Add to saved papers

An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability.

OBJECTIVES: To assess the impact of head motion artefacts and an automated artefact-correction system on cone beam CT (CBCT) image quality and interpretability for simulated diagnostic tasks.

METHODS: A partially dentate human skull was mounted on a robot simulating four types of head movement (anteroposterior translation, nodding, lateral rotation, and tremor), at three distances (0.75, 1.5, and 3 mm) based on two movement patterns (skull returning/not returning to the initial position). Two diagnostic tasks were simulated: dental implant planning and detection of a periapical lesion. Three CBCT units were used to examine the skull during the movements and no-motion (control): Cranex 3Dx (CRA), Orthophos SL 3D (ORT), and X1 without (X1wo ) and with (X1wi ) an automated motion artefact-correction system. For each diagnostic task, 88 examinations were performed. Three observers, blinded to unit and movement, scored image quality: presence of stripe artefacts (present/absent), overall unsharpness (present/absent), and image interpretability (interpretable/non-interpretable). κ statistics assessed interobserver agreement, and descriptive statistics summarized the findings.

RESULTS: Interobserver agreement for image interpretability was good (average κ = 0.68). Regarding dental implant planning, X1wi images were interpretable by all observers, while for the other units mainly the cases with tremor were non-interpretable. Regarding detection of a periapical lesion, besides tremor, most of the 3 mm movements based on the "not returning" pattern were also non-interpretable for CRA, ORT, and X1wo . For X1wi , two observers scored 1.5 mm tremor and one observer scored 3 mm tremor as non-interpretable.

CONCLUSIONS: The automated motion artefact-correction system significantly enhanced CBCT image quality and interpretability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app