Add like
Add dislike
Add to saved papers

CDC42 regulates the expression of superficial zone molecules in part through the actin cytoskeleton and myocardin-related transcription factor-A.

Osteoarthritis (OA) is a degenerative disease that initially manifests as loss of the superficial zone (SZ) of articular cartilage. SZ chondrocytes (SZC) differ in morphology from other chondrocytes as they are elongated and oriented parallel to the tissue surface. Proteoglycan 4 (PRG4) and tenascin C (TNC) are molecules expressed by SZC, which have been shown to be chondroprotective. Identification of the signalling pathway(s) regulating expression of SZ molecules may lead to a therapeutic target that can be used to delay or prevent the onset of OA. The hypothesis of this study is that expression of SZ molecules are regulated in part, by the CDC42-actin-myocardin-related transcription factor-A (MRTF-A) signaling pathway. SZC from bovine metacarpal-phalangeal joints were isolated and grown in monolayer culture. Each target in the CDC42-actin-MRTF-A pathway was inhibited and the effect on cell shape, actin cytoskeleton status, and expression of PRG4 and TNC were determined. Treatment with the CDC42 inhibitor ML141 decreased PRG4 and TNC expression, and correlated with increased cell circularity and G-/F-actin ratio. PRG4 and TNC expression were differentially regulated by actin depolymerizing agents, latrunculin B and cytochalasin D. Chemical inhibition of MRTF-A resulted in decreased expression of both PRG4 and TNC; however, specific knockdown by small interfering RNA only decreased expression of TNC indicating that TNC, but not PRG4, is regulated by MRTF-A. Although PRG4 and TNC expression are both regulated by CDC42 and actin, it appears to occur through different downstream signaling pathways. Further study is required to elucidate the pathway regulating PRG4. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2421-2430, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app