Add like
Add dislike
Add to saved papers

Low-temperature plasma-probe mass spectrometry based method for determination of new psychoactive substances in oral fluid.

RATIONALE: Owing to the widespread abuse of new psychoactive substances (NPSs), developing a rapid, easily operable method to detect NPSs in oral fluid is of high priority. Their ease of collection and non-invasive nature make oral fluid samples suitable for on-site tests and forensic cases. Herein we report a rapid and sensitive method to screen and quantitate 11 new NPSs in oral fluid.

METHODS: Low-temperature plasma-probe mass spectrometry (LTP-MS) was applied and, to improve the signal intensity, thermally assisted desorption was employed. Tandem mass spectrometry was performed to exclude false positive signals and to decrease noise at the m/z values of interest.

RESULTS: Linearity was studied using matrix-matched calibration curves; all the analytes exhibited good linearity with R2 varying from 0.9907 to 0.9981. The estimated limits of detection (LODs) were in the range of 3.0-15.2 ng/mL, which are comparable to those of immunoassay; relative standard deviations (RSDs) are no greater than 23% at the studied concentration levels.

CONCLUSIONS: The proposed LTP-MS-based method was promising in forensic and on-site applications to curb the abuse of NPSs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app