Add like
Add dislike
Add to saved papers

The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities.

Oncotarget 2018 Februrary 14
The NM23/NME gene was identified as a metastasis suppressor. It's re-expression inhibited cancer cell motility and suppressed metastasis, without effecting primary tumor size in multiple model systems. The mechanisms of NME suppression of motility and metastasis are incompletely known. Of particular interest, has been NME histidine 118 phosphorylation, involved in nucleoside diphosphate kinase (NDPK) and histidine protein kinase (HPK) activities. Using recently developed monoclonal antibodies to phosphohistidine, we have addressed the correlation of NME phosphohistidine with motility suppression, and distinguished the NDPK and HPK contributions. While general levels of NME correlated with its 1-phosphohistidine form in two cell line model systems, two exceptions were noted: Tumor cells actively migrating in scratch assays, even if expressing high levels of NME1, were low in its 1-phosphohistidine form. Site-directed mutagenesis of NME1 histidine 118 and proline 96 was examined by transfection experiments and partial purification of recombinant proteins. NME1P96S overexpressing tumor cells exhibited high motility and migration phenotypes despite high 1-phosphohistidine content and NDPK activity; HPK activity using succinate thiokinase as a substrate was poor. The data suggest the importance of NME 1-phosphohistidine levels in potential mechanistic pathways of metastasis suppression and point toward the HPK activity of NME1 downstream of autophosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app