Add like
Add dislike
Add to saved papers

A model of neglect during postnatal life heightens obesity-induced hypertension and is linked to a greater metabolic compromise in female mice.

.: Exposure to early life stress (ELS) is associated with behavioral-related alterations, increases in body mass index and higher systolic blood pressure in humans. Postnatal maternal separation and early weaning (MSEW) is a mouse model of neglect characterized by a long-term dysregulation of the neuroendocrine system.

OBJECTIVES: Given the contribution of adrenal-derived hormones to the development of obesity, we hypothesized that exposure to MSEW could contribute to  the worsening of cardiometabolic function in response to chronic high-fat diet (HF) feeding by promoting adipose tissue expansion and insulin resistance.

SUBJECTS: MSEW was performed in C57BL/6 mice from postnatal days 2-16 and weaned at postnatal day 17. Undisturbed litters weaned at postnatal day 21 served as the control (C) group. At the weaning day, mice were placed on a low-fat diet (LF) or HF for 16 weeks.

RESULTS: When fed a LF, male and female mice exposed to MSEW display similar body weight but increased fat mass compared to controls. However, when fed a HF, only female MSEW mice display increased body weight, fat mass, and adipocyte hypertrophy compared with controls. Also, female MSEW mice display evidence of an early onset of cardiometabolic risk factors, including hyperinsulinemia, glucose intolerance, and hypercholesterolemia. Yet, both male and female MSEW mice fed a HF show increased blood pressure compared with controls.

CONCLUSIONS: This study shows that MSEW promotes a sex-specific dysregulation of the adipose tissue expansion and glucose homeostasis that precedes the development of obesity-induced hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app