JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High level of C-type natriuretic peptide induced by hyperandrogen-mediated anovulation in polycystic ovary syndrome mice.

Polycystic ovary syndrome (PCOS), which is characterized by hyperandrogenism, is a complex endocrinopathy that affects the fertility of 9-18% of reproductive-aged women. However, the exact mechanism of PCOS, especially hyperandrogen-induced anovulation, is largely unknown to date. Physiologically, the natriuretic peptide type C/natriuretic peptide receptor 2 (CNP/NPR2) system is essential for sustaining oocyte meiotic arrest until the preovulatory luteinizing hormone (LH) surge. We therefore hypothesized that the CNP/NPR2 system is also involved in PCOS and contributes to arresting oocyte meiosis and ovulation. Here, based on a dehydroepiandrosterone (DHEA)-induced PCOS-like mouse model, persistent high levels of CNP/NPR2 were detected in anovulation ovaries. Meanwhile, oocytes arrested at the germinal vesicle stage correlated with persistent high levels of androgen and estrogen. We further showed that ovulation failure in these mice could be a result of elevated Nppc/Npr2 gene transcription that was directly increased by androgen (AR) and estrogen (ER) receptor signaling. Consistent with this, anovulation was alleviated by administration of either exogenous human chorionic gonadotropin (hCG) or inhibitors of AR or ER to reduce the level of CNP/NPR2. Additionally, the CNP/NPR2 expression pattern in the anovulated follicles was, to some extent, consistent with the clinical expression in PCOS patients. Therefore, our study highlights the important role an overactive CNP/NPR2 system caused by hyperandrogenism in preventing oocytes from maturation and ovulation in PCOS mice. Our findings provide insight into potential mechanisms responsible for infertility in women with PCOS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app