Add like
Add dislike
Add to saved papers

G protein βγ subunits directly interact with and activate phospholipase Cϵ.

Phospholipase C (PLC) enzymes hydrolyze membrane phosphatidylinositol 4,5 bisphosphate (PIP2 ) and regulate Ca2+ and protein kinase signaling in virtually all mammalian cell types. Chronic activation of the PLCϵ isoform downstream of G protein-coupled receptors (GPCRs) contributes to the development of cardiac hypertrophy. We have previously shown that PLCϵ-catalyzed hydrolysis of Golgi-associated phosphatidylinositol 4-phosphate (PI4P) in cardiac myocytes depends on G protein βγ subunits released upon stimulation with endothelin-1. PLCϵ binds and is directly activated by Ras family small GTPases, but whether they directly interact with Gβγ has not been demonstrated. To identify PLCϵ domains that interact with Gβγ, here we designed various single substitutions and truncations of WT PLCϵ and tested them for activation by Gβγ in transfected COS-7 cells. Deletion of only a single domain in PLCϵ was not sufficient to completely block its activation by Gβγ, but blocked activation by Ras. Simultaneous deletion of the C-terminal RA2 domain and the N-terminal CDC25 and cysteine-rich domains completely abrogated PLCϵ activation by Gβγ, but activation by the GTPase Rho was retained. In vitro reconstitution experiments further revealed that purified Gβγ directly interacts with a purified fragment of PLCϵ (PLCϵ-PH-RA2) and increases PIP2 hydrolysis. Deletion of the RA2 domain decreased Gβγ binding and eliminated Gβγ stimulation of PIP2 hydrolysis. These results provide first evidence that Gβγ directly interacts with PLCϵ and yield insights into the mechanism by which βγ subunits activate PLCϵ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app