Add like
Add dislike
Add to saved papers

Fifty years of microtubule sliding in cilia.

Motility of cilia (also known as flagella in some eukaryotes) is based on axonemal doublet microtubule sliding that is driven by the dynein molecular motors. Dyneins are organized into intricately patterned inner and outer rows of arms, whose collective activity is to produce inter-microtubule movement. However, to generate a ciliary bend, not all dyneins can be active simultaneously. The switch point model accounts, in part, for how dynein motors are regulated during ciliary movement. On the basis of this model, supported by key direct experimental observations as well as more recent theoretical and structural studies, we are now poised to understand the mechanics of how ciliary dynein coordination controls axonemal bend formation and propagation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app