Add like
Add dislike
Add to saved papers

Bioactivity-guided cut countercurrent chromatography for isolation of lysine-specific demethylase 1 inhibitors from Scutellaria baicalensis Georgi.

Countercurrent chromatography (CCC) has gradually become a widely used method for preparative separation of bioactive natural molecules. These molecules generally contain distinct scaffolds and characteristics that cannot be readily isolated from plants. While one-dimensional CCC is typically used for the initial purification with insufficiently resolved peaks after locating bioactive components, two-dimensional (2D) or multi-dimensional CCC strategies are employed to improve the resolution of peaks. However, these methods usually present certain disadvantages, such as complicated procedures and increased time consumption, experimental costs, and equipment requirements. Here, a bioactivity-guided cut CCC strategy was established to isolate lysine-specific demethylase 1 (LSD1) inhibitors from Scutellaria baicalensis Georgi. Gradient-elution CCC coupled with real-time detection of LSD1 inhibition by the collected fractions was developed. Next, an online-storage recycling CCC mode was designed to enable the active fractions to be stored in coils, and these active fractions were further separated to obtain pure compounds by using sequential recycling elution. In this strategy, active fractions are first identified, and then pure LSD1 inhibitors are isolated in the 2D CCC mode through continuous separation on a single instrument. By using our bioactivity-guided cut CCC strategy, we successfully isolated six natural LSD1 inhibitors from S. baicalensis Georgi, five of which were identified for the first time as natural LSD1 inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app