Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Clinical Evaluation of Free-Breathing Contrast-Enhanced T1w MRI of the Liver using Pseudo Golden Angle Radial k-Space Sampling.

PURPOSE: Contrast-enhanced T1-weighted MR imaging of the liver is typically acquired using breath-hold techniques to reduce motion artifacts and to allow for optimal diagnostic image quality. Insufficient breath-holds during MR data collection can cause severe reduction of image quality up to the point of being non-diagnostic. The aim of this study was to evaluate the subjective and objective clinical image quality of a novel free-breathing radial k-space sampling MR technique.

MATERIALS AND METHODS: Consent for this study was given by the local IRB committee. 86 patients who underwent both breath-hold (BH) and free-breathing (FB) late-phase contrast T1w-FS-FFE liver MRI using conventional BH Cartesian (Cartesian-eTHRIVE) and FB "pseudo golden angle" radial k-space sampling (Radial-eTHRIVE) were included in this retrospective analysis. Subjective analysis comprised 5-point Likert scale ratings (1 = very good; 5 = non-diagnostic) for "artifact impact", "anatomic sharpness", "vessel sharpness", "contrast impression", and "overall diagnostic quality". Relative signal intensities in different ROIs were compared between Cartesian-eTHRIVE and Radial-eTHRIVE. For statistical differences paired Wilcoxon test and paired t-test have been performed (p < 0.05).

RESULTS: The MR scan time was significantly longer for FB Radial-eTHRIVE (2 min, 54 s) compared to BH Cartesian-eTHRIVE (0 min 15 s). Cartesian-eTHRIVE demonstrated a superior subjective contrast impression and objective measurements revealed an increased lesion-to-liver-contrast for hypointense liver lesions (Hypo-LTLC: 0.33 ± 0.19 vs. 0.20 ± 0.11; p = 0.000), while no difference was observed for hyperintense liver lesions (Hyper-LTLC). Subjective evaluation showed superior anatomic sharpness ratings by both readers for Radial-eTHRIVE. Most importantly, in a subgroup analysis of patients who were unable to perform adequate breath-holds, free-breathing Radial-eTHRIVE still demonstrated good subjective image quality.

CONCLUSION: Free-breathing, radial k-space sampling T1w MRI of the liver delivers high diagnostic image quality, especially in patients who are unable to adequately perform breath-hold maneuvers. Thus, Radial-eTHRIVE can be an important clinical alternative in patients with impaired respiration status.

KEY POINTS: · Delayed-phase contrast-enhanced MRI of the liver can be robustly performed using a "pseudo golden angle" Radial-eTHRIVE sequence.. · Free-breathing Radial-eTHRIVE yields good diagnostic image quality in case of a high artifact burden in breath-hold Cartesian-eTHRIVE and thus could be used as a "back-up" for patients with impaired respiratory capacity.. · A lower lesion-to-liver-contrast ratio is observed for hypointense liver lesions in free-breathing Radial-eTHRIVE sequence..

CITATION FORMAT: · Hedderich DM, Weiss K, Spiro JE et al. Clinical Evaluation of Free-Breathing Contrast-Enhanced T1w MRI of the Liver using Pseudo Golden Angle Radial k-Space Sampling. Fortschr Röntgenstr 2018; 190: 601 - 609.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app