Journal Article
Review
Add like
Add dislike
Add to saved papers

Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives.

Biosensors 2018 March 14
Minimally invasive continuous glucose monitoring (CGM) sensors are wearable medical devices that provide real-time measurement of subcutaneous glucose concentration. This can be of great help in the daily management of diabetes. Most of the commercially available CGM devices have a wire-based sensor, usually placed in the subcutaneous tissue, which measures a "raw" current signal via a glucose-oxidase electrochemical reaction. This electrical signal needs to be translated in real-time to glucose concentration through a calibration process. For such a scope, the first commercialized CGM sensors implemented simple linear regression techniques to fit reference glucose concentration measurements periodically collected by fingerprick. On the one hand, these simple linear techniques required several calibrations per day, with the consequent patient's discomfort. On the other, only a limited accuracy was achieved. This stimulated researchers to propose, over the last decade, more sophisticated algorithms to calibrate CGM sensors, resorting to suitable signal processing, modelling, and machine-learning techniques. This review paper will first contextualize and describe the calibration problem and its implementation in the first generation of CGM sensors, and then present the most recently-proposed calibration algorithms, with a perspective on how these new techniques can influence future CGM products in terms of accuracy improvement and calibration reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app