Add like
Add dislike
Add to saved papers

Self-assembly of bacterial amyloid protein nanomaterials on solid surfaces.

HYPOTHESIS: Amyloid-forming biofilm proteins of Escherichia coli, namely CsgA and CsgB, can form self-assembled nanofibers on solid surfaces. These proteins can be programmed to form bio-nanomaterials for functional applications.

EXPERIMENTS: In this study, the assembly of the CsgA and CsgB protein on solid surfaces was investigated in real time using a quartz crystal microbalance instrument with dissipation monitoring. The assembly kinetics of the CsgA and CsgB proteins in various settings on solid surfaces were investigated. Protein nanowires were investigated using electron microscopy.

FINDINGS: CsgA protein polymers and CsgB-added CsgA polymers form densely packed biofilm on gold surfaces, whereas CsgB polymers and CsgA-added CsgB polymers form biofilms with high water-holding capacity according to the dissipation data. Electron microscopy images of nanofibers grown on gold surfaces showed that CsgA and CsgB polymers include thicker nanofibers compared to the nanofibers formed by CsgA-CsgB protein combinations. The resulting nano/microstructures were found to have strong fluorescence signals in aqueous environments and in chloroform while conserving the protein nanowire network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app