Add like
Add dislike
Add to saved papers

Evaluation of the inflammatory response to Kudoa septempunctata genotype ST3 isolated from olive flounder (Paralichthys olivaceus) in Caco-2 cells.

Kudoa septempunctata (Myxosporea, Multivalvulida) is a parasite of the trunk muscle of cultured olive flounder (Paralichthys olivaceus). We investigated whether K. septempunctata genotype ST3 spores induce cell damage and the secretion of inflammatory mediators in Caco-2 cells, which exhibit characteristics similar to human intestinal epithelial cells. Purified K. septempunctata spores were heated at 95 °C for 5 min. Lactate dehydrogenase (LDH) release was measured to determine the efficacy of denaturation. Naïve and heated spores, lipopolysaccharide (positive control) and vehicle (negative control) were added to Caco-2 cells. Cells were subjected to the cytotoxic LDH assay and western blot analysis to examine the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Supernatants were collected to measure nitric oxide (NO) and prostaglandin E2 (PGE2 ). Most spores were denaturated by heating, and the spore morphology was found to be wrinkled with shell valves and polar capsules. In addition, cytotoxicity and inflammatory mediators, such as NO, PGE2 , iNOS, and COX-2, remained unchanged in Caco-2 cells following exposure to naïve and heated spores compared with the positive controls. Collectively, the findings of this study imply that spores of K. septempunctata genotype ST3 do not cause inflammation in Caco-2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app