Add like
Add dislike
Add to saved papers

A High-Capacity O2-Type Li-Rich Cathode Material with a Single-Layer Li 2 MnO 3 Superstructure.

A high capacity cathode is the key to the realization of high-energy-density lithium-ion batteries. The anionic oxygen redox induced by activation of the Li2 MnO3 domain has previously afforded an O3-type layered Li-rich material used as the cathode for lithium-ion batteries with a notably high capacity of 250-300 mAh g-1 . However, its practical application in lithium-ion batteries has been limited due to electrodes made from this material suffering severe voltage fading and capacity decay during cycling. Here, it is shown that an O2-type Li-rich material with a single-layer Li2 MnO3 superstructure can deliver an extraordinary reversible capacity of 400 mAh g-1 (energy density: ≈1360 Wh kg-1 ). The activation of a single-layer Li2 MnO3 enables stable anionic oxygen redox reactions and leads to a highly reversible charge-discharge cycle. Understanding the high performance will further the development of high-capacity cathode materials that utilize anionic oxygen redox processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app