Add like
Add dislike
Add to saved papers

Incorporating BIRD-based homodecoupling in the dual-optimized, inverted 1 J CC 1,n-ADEQUATE experiment.

1,n-ADEQUATE is a powerful NMR technique for elucidating the structure of proton-deficient small molecules that can help establish the carbon skeleton of a given molecule by providing long-range three-bond 13 C─13 C correlations. Care must be taken when using the experiment to identify the simultaneous presence of one-bond 13 C─13 C correlations that are not filtered out, unlike the HMBC experiment that has a low-pass J-filter to filter 1 JCH responses out. Dual-optimized, inverted 1 JCC 1,n-ADEQUATE is an improved variant of the experiment that affords broadband inversion of direct responses, obviating the need to take additional steps to identify these correlations. Even though ADEQUATE experiments can now be acquired in a reasonable amount of experimental time if a cryogenic probe is available, low sensitivity is still the main impediment limiting the application of this elegant experiment. Here, we wish to report a further refinement that incorporates real-time bilinear rotation decoupling-based homodecoupling methodology into the dual-optimized, inverted 1 JCC 1,n-ADEQUATE pulse sequence. Improved sensitivity and resolution are achieved by collapsing homonuclear proton-proton couplings from the observed multiplets for most spin systems. The application of the method is illustrated with several model compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app