Add like
Add dislike
Add to saved papers

NF-κB inhibition by dimethylaminoparthenolide radiosensitizes non-small-cell lung carcinoma by blocking DNA double-strand break repair.

Cell Death Discovery 2018 December
Despite optimal chemotherapy, radiotherapy (RT), and/or surgery, non-small-cell lung carcinoma (NSCLC) remains the leading cause of cancer-related death in the US and worldwide. Thoracic RT, a mainstay in the treatment of locally advanced NSCLC, is often restricted in efficacy by a therapeutic index limited by sensitivity of tissues surrounding the malignancy. Therefore, radiosensitizers that can improve the therapeutic index are a vital unmet need. Inhibition of the NF-κB pathway is a proposed mechanism of radiosensitization. Here we demonstrate that inhibition of the canonical NF-κB pathway by dimethylaminoparthenolide (DMAPT) radiosensitizes NSCLC by blocking DNA double-strand break (DSB) repair. NF-κB inhibition results in significant impairment of both homologous recombination (HR) and non-homologous end joining (NHEJ), as well as reductions in ionizing radiation (IR)-induced DNA repair biomarkers. NF-κB inhibition by DMAPT shows preclinical potential for further investigation as a NSCLC radiosensitizer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app