Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transitions from a Kondo-like diamagnetic insulator into a modulated ferromagnetic metal in FeGa 3-y Ge y .

One initial and essential question of magnetism is whether the magnetic properties of a material are governed by localized moments or itinerant electrons. Here, we expose the case for the weakly ferromagnetic system FeGa3- y Ge y , wherein these two opposite models are reconciled, such that the magnetic susceptibility is quantitatively explained by taking into account the effects of spin-spin correlation. With the electron doping introduced by Ge substitution, the diamagnetic insulating parent compound FeGa3 becomes a paramagnetic metal as early as at y=0.01, and turns into a weakly ferromagnetic metal around the quantum critical point y =0.15. Within the ferromagnetic regime of FeGa3- y Ge y , the magnetic properties are of a weakly itinerant ferromagnetic nature, located in the intermediate regime between the localized and the itinerant dominance. Our analysis implies a potential universality for all itinerant-electron ferromagnets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app