Add like
Add dislike
Add to saved papers

Protein kinase D1 conditional null mice show minimal bone loss following ovariectomy.

We previously found that 3- and 6-month-old male mice with conditional ablation of protein kinase D1 (PRKD1) in osteoprogenitor cells (expressing Osterix) exhibited reduced bone mass. Others have demonstrated similar effects in young female PRKD1-deficient mice. Here we examined the bone resorptive response of adult female floxed control and conditional knockout (cKO) mice undergoing sham surgery or ovariectomy (OVX). Femoral and tibial bone mineral density (BMD) values were significantly reduced upon OVX in control, but not cKO, females compared to the respective sham-operated mice. Micro-CT analysis showed that OVX significantly increased trabecular number and decreased trabecular spacing in cKO but not control mice. Finally, in control mice serum levels of a marker of bone resorption (pyridinoline crosslinks) and the osteoclast activator RANKL significantly increased upon OVX; however, no such OVX-induced increase was observed in cKO mice. Our results suggest the potential importance of PRKD1 in response to estrogen loss in bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app