Add like
Add dislike
Add to saved papers

Mode energy of graphene plasmons and its role in determining the local field magnitudes.

Optics Express 2018 March 6
We theoretically study the mode energy of graphene plasmons and its fundamental role in determining the local field magnitudes. While neglecting the magnetic field energy of the mode, we derive a concise expression for the total mode energy, which is independent on the details of the mode field distributions and valid for both propagating and localized modes. We find that the mean square of the local electric fields of a graphene plasmonic mode scales linearly with the light absorption rate of the mode and the electron relaxation time of graphene. The possible strategies for improving the local field magnitudes of graphene plasmons are also discussed. Our theoretical analysis presented here may benefit the design of various graphene-based optical and optoelectronic devices for light-harvesting or energy conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app