Add like
Add dislike
Add to saved papers

Superresolution reflection microscopy via absorbance modulation: a theoretical study.

Optics Express 2018 March 6
Absorbance modulation enables lateral superresolution in optical lithography and transmission microscopy by generating a dynamic aperture within a photochromic absorbance-modulation layer (AML) coated on a substrate or a specimen. The applicability of this concept to reflection microscopy has not been addressed so far, although reflection imaging exhibits the important ability to image a wide range of samples, transparent or opaque, dielectric or metallic. In this paper, a simulation model for absorbance-modulation imaging (AMI) in confocal reflection microscopy is presented and it is shown that imaging well beyond the diffraction limit is feasible. In addition, we derive analytical design equations and estimate the dependence of the achievable resolution and pixel dwell time on relevant parameters, such as the AML properties and the applied light powers. We prove the validity of these equations through a comparison with the simulation results and we show that a resolution enhancement down to 1/5 of the diffraction limit is possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app