Add like
Add dislike
Add to saved papers

Application of sequential extraction analysis to Pb(II) recovery by zerovalent iron-based particles.

Zerovalent iron (ZVI) is an environmental-friendly reactive reagent for recovering heavy metals. However, the detailed recovery mechanism remains unclear due to a lack of quantitative analysis of recovery products. Herein, microscale ZVI, nanoscale ZVI and Ni/Fe nanoparticles were used to recover Pb(II) in aqueous solution and a sequential extraction procedure (SEP) was applied to determine the formed lead species quantitatively. At high initial Pb(II) concentration (500 mg L-1 ), more than 99.5% of Pb(II) was immobilized by Ni/Fe and n-ZVI, whereas m-ZVI caused inferior recovery efficiency (<25%). XRD and XPS results revealed that Pb(II) was reduced to Pb0 prior to the formation of metal hydroxides as the external shell of ZVI. SEP results showed that the fraction bound to carbonates (PbO), fraction bound to iron oxides and exchangeable fraction were the main lead species conducted by Ni/Fe, n-ZVI and m-ZVI, respectively. Consequently, (co-)precipitation and specific adsorption dominated Pb(II) recovery by Ni/Fe and n-ZVI, whereas m-ZVI conducted Pb(II) recovery mainly via weak adsorption. The reactivity of ZVI toward Pb(II) followed the increasing order of m-ZVI < n-ZVI ≤ Ni/Fe. The detailed mechanisms of Pb(II) recovery conducted by different ZVI were proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app