Add like
Add dislike
Add to saved papers

The combined magnetic field and iron oxide-PLGA composite particles: Effective protein antigen delivery and immune stimulation in dendritic cells.

Superparamagnetic iron oxide nanoparticles (SPIONs) have received much attention in drug and biomolecule delivery systems. Here, we report a delivery system using the combination of a magnetic field and the relatively biocompatible composite particles of poly(lactic-co-glycolic acid) and SPIONs (SPION-PLGA particles) for protein delivery to bone-marrow derived primary dendritic cells (BM-DCs). SPIONs with the diameter of ∼10 nm were synthesized via thermal decomposition of iron(III) oleate. The SPIONs and bovine serum albumin (BSA) were encapsulated in PLGA particles of two different diameters, 300 and 500 nm. The obtained SPIONs-PLGA nanocomposites exhibited superparamagnetic character, showed low cytotoxicity and were well taken up in macrophage and BM-DCs under an external magnetic field. In addition, the nanocomposites were tested for immune induction in BM-DCs. This combined SPION-PLGA carrier and an external magnetic field can significantly enhance BM-DC maturation by upregulating MHC II, CD80 and CD86 expression. Immune response induction by this strategy is verified through a significant upregulation of the IL-12 and IFN-γ production. Moreover, no activation of BM-DCs to secrete pro-inflammatory cytokine TNF-α was observed for all particles. We anticipate these findings to be a starting point for vaccine researches involving the combined magnetic field and SPION-PLGA composite particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app