Add like
Add dislike
Add to saved papers

Nanofibered Gelatin-Based Nonwoven Elasticity Promotes Epithelial Histogenesis.

Regarding tissue regeneration, mechanics of biomaterials gains progressive importance. Therefore, this study reports on in situ crosslinked electrospun gelatin nonwoven mats (NWMs) whose distinct modulus of elasticity (ME) promotes epithelial tissue formation in a graded manner. NWMs, comprising fiber diameters in various distributions, yield an ME of about 2.1, 3.2, and 10.9 kPa. A two-step approach of preclinical in vitro validation identifies the elasticity of 3.2 kPa as superior to the other, regarding the histogenetic epithelial outcome. Hence, this 3.2 kPa candidate NWM is colonized with oral mucosal epithelial keratinocytes in the absence or presence of mesenchymal fibroblasts and/or endothelial cells. Evaluation of epithelial histogenesis at days 1 to 10 occurs by colorimetric and fluorescence-based immunohistochemistry (IHCH) of specific biomarkers. These include cytokeratins (CK) 14, CK1, and involucrin that indicate different stages of epithelial differentiation, as well as the basement membrane constituent collagen type IV and Ki-67 as a proliferation marker. Intriguingly, histogenesis and IHCH reveal the best resemblance of the native epithelium by the NWM alone, irrespective of other cell counterparts. These findings prove the gelatin NWM a convenient cell matrix, and evidence that NWM mechanics is important to promote epithelial histogenesis in view of prospective clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app